TOPOLOGY OF NONNEGATIVELY CURVED HYPERSURFACES WITH PRESCRIBED BOUNDARY IN Rn

نویسندگان

  • STEPHANIE ALEXANDER
  • MOHAMMAD GHOMI
  • JEREMY WONG
چکیده

We prove that a smooth compact immersed submanifold of codimension 2 in R, n ≥ 3, bounds at most finitely many topologically distinct compact nonnegatively curved hypersurfaces. Analogous results for noncompact fillings are obtained as well. On the other hand, we show that these topological finiteness theorems may not hold if the prescribed boundary is not sufficiently regular, e.g., C. In particular we construct a simple closed differentiable and rectifiable curve in R which bounds infinitely many topologically distinct smooth positively curved surfaces. The proofs employ, among other methods, theorems of Gromov and Perelman on Alexandrov spaces with curvature bounded below.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topology of Riemannian Submanifolds with Prescribed Boundary

We prove that a smooth compact immersed submanifold of codimension 2 in R, n ≥ 3, bounds at most finitely many topologically distinct compact nonnegatively curved hypersurfaces. Analogous results for complete fillings of arbitrary Riemannian submanifolds are obtained as well. On the other hand, we show that these finiteness theorems may not hold if the codimenion is too high, or the prescribed ...

متن کامل

Deformations of Unbounded Convex Bodies and Hypersurfaces

We study the topology of the space ∂K of complete convex hypersurfaces of R which are homeomorphic to Rn−1. In particular, using Minkowski sums, we construct a deformation retraction of ∂K onto the Grassmannian space of hyperplanes. So every hypersurface in ∂K may be flattened in a canonical way. Further, the total curvature of each hypersurface evolves continuously and monotonically under this...

متن کامل

Space of Nonnegatively Curved Metrics and Pseudoisotopies

Let V be an open manifold with complete nonnegatively curved metric such that the normal sphere bundle to a soul has no section. We prove that the souls of nearby nonnegatively curved metrics on V are smoothly close. Combining this result with some topological properties of pseudoisotopies we show that for many V the space of complete nonnegatively curved metrics has infinite higher homotopy gr...

متن کامل

Techniques for Classifying Nonnegatively Curved Left-invariant Metrics on Compact Lie Groups

We provide techniques for studying the nonnegatively curved leftinvariant metrics on a compact Lie group. For “straight” paths of left-invariant metrics starting at bi-invariant metrics and ending at nonnegatively curved metrics, we deduce a nonnegativity property of the initial derivative of curvature. We apply this result to obtain a partial classification of the nonnegatively curved left-inv...

متن کامل

The Dirichlet Problem for Monge-ampère Equations in Non-convex Domains and Spacelike Hypersurfaces of Constant Gauss Curvature

In this paper we extend the well known results on the existence and regularity of solutions of the Dirichlet problem for Monge-Ampère equations in a strictly convex domain to an arbitrary smooth bounded domain in Rn as well as in a general Riemannian manifold. We prove for the nondegenerate case that a sufficient (and necessary) condition for the classical solvability is the existence of a subs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007